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Abstract

The three-dimensional free vibration of annular sector plates with various boundary conditions is studied by means of the

Chebyshev–Ritz method. The analysis is based on the three-dimensional small strain linear elasticity theory. The product of

Chebyshev polynomials satisfying the necessary boundary conditions is selected as admissible functions in such a way that the

governing eigenvalue equation can be conveniently derived through an optimization process by the Ritz method. The boundary

functions guarantee the satisfaction of the geometric boundary conditions of the plates and the Chebyshev polynomials provide

the robustness for numerical calculation. The present study provides a full vibration spectrum for the thick annular sector

plates, which cannot be given by the two-dimensional (2-D) theories such as the Mindlin theory. Comprehensive numerical

results with high accuracy are systematically produced, which can be used as benchmark to evaluate other numerical methods.

The effect of radius ratio, thickness ratio and sector angle on natural frequencies of the plates with a sector angle from 1201 to

3601 is discussed in detail. The three-dimensional vibration solutions for plates with a re-entrant sector angle (larger than 1801)

and shallow helicoidal shells (sector angle larger than 3601) with a small helix angle are presented for the first time.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

As fundamental structural elements, plates are widely used in various engineering constructions. The
vibration characteristics of annular sector plates have attracted the interest of many investigators. The early
study on plate vibrations is focused on the classical plate theory (CPT), which is suitable for thin plate
structures. Ramakris and Kunukkas [1] provided a closed-form analytical solution for free vibration of an
annular sector plate with radial edges simply supported. Mukhopadhyay [2,3] used a semi-analytical method
and Thiruvenkatachari [4,5] used the integral equation technique to analyze the vibrations of annular sector
plates, respectively. Kim and Dickinson [6] used one-dimensional (1-D) orthogonal polynomials and Liew and
Lam [7] used two-dimensional (2-D) orthogonal polynomials as admissible functions to study the free
vibration of annular sector plates by the Rayleigh–Ritz method. Ramaiah and Vijayakumar [8] studied the
ee front matter r 2008 Elsevier Ltd. All rights reserved.
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free vibration of annular sector plates with simply supported radial edges by a combination of the
Rayleigh–Ritz method and coordinate transformation. Irie et al. [9] studied the vibration of cantilevered
annular sector plates with curved radial edges by a coordinate transformation. Mizusawa [10] and Mizusawa
and Kajita [11] used the spline finite element and spline strip method to analyze the free vibration of annular
sector plates, respectively. Swaminadham et al. [12] compared the natural frequencies of annular sector plates
from the finite element method and experiments. Seok and Tiersten [13] used a variational approximation
procedure to analyze the free vibration of cantilevered annular sector plates. Houmat [14] used the hierarchical
finite element method to study the free vibration of annular sector plates. Sharma et al. [15,16] integrated an
analytical approach with the Chebyshev polynomials technique to study the buckling and free vibration of
isotropic and laminated composite sector plates based on the first-order shear deformation theory.

For moderate thickness plates, the first-order shear deformable plate theory is commonly used, which could
provide a result more accurate than that from the CPT. Liew and Liu [17] used the differential quadrature
method to analyze the free vibration of thick annular sector plates. Rao et al. [18] and Guruswamy and Yang
[19] used the finite element method to analyze the vibrations of thick annular sector plates. Benson and Hinton
[20] and Cheung and Chan [21] used the finite strip method to carry out static and dynamic analyses of thick
annular sector plates. Mizusawa [22] used the finite element method to study the natural frequencies of thick
annular sector plates. Xiang et al. [23] applied the Ritz method to study the free vibration of thick annular sector
plates. Leissa et al. [24,25] considered the effect of stress singularities on the vibration analysis of thick annular
sector plates and presented the corner functions to improve the convergence of the numerical solutions.

However, only three papers have been found in the published literature about the vibrations of annular
sector plates based on the three-dimensional (3-D) elasticity theory. Mizusawa [26] used the finite prism
method, Houmat [27] used the hierarchical finite element method and Liew et al. [28] used the 2-D orthogonal
polynomials in the Ritz method to analyze the free vibration of thick annular sector plates. The existing results
are simply too scarce for engineering applications and comparative studies, and only results for annular sector
plates with sector angles not larger than 901 are available.

In the present study, the Chebyshev–Ritz method is applied to study the free vibration of thick annular
sector plates. Admissible functions can be derived conveniently from a product of the Chebyshev polynomials
and boundary functions in such a way that the geometric boundary conditions are implicitly satisfied. The
present admissible functions show a distinct advantage over admissible functions based on simple polynomials
as Chebyshev polynomials are numerically stable even when a large number of admissible functions are
employed for the solutions of higher vibration modes [29,30].

2. Basic formulation

Consider an annular sector plate shown in Fig. 1. The plate is of constant thickness h, inner radius R0, outer
radius R1 and sector angle y0. A cylindrical coordinate system (r, y, z) is taken to describe the displacement
components u, v, w at a generic point in the radial, circumferential and thickness directions. The linear elastic
strain energy P of the plate can be written in the integral form

P ¼
E

2ð1þ nÞ

Z R1
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0

Z h=2

�h=2

n
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where E is Young’s modulus and n is Poisson’s ratio. The strain components eij (i, j ¼ r, y, z) are defined as
follows:
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The kinetic energy T of the plate is given by
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where r is the mass density per unit volume.
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Fig. 1. A sector plate: (a) the plan and (b) the cross-section.

D. Zhou et al. / Journal of Sound and Vibration 320 (2009) 421–437 423
For simplicity and convenience in mathematical formulation, the following dimensionless parameters are
introduced:

r̄ ¼
2r

R
� c; ȳ ¼

2y
y0
� 1; z̄ ¼

2z

h
(4)

where R ¼ R1�R0 is the width of the plate in the radial direction and c ¼ (R1+R0)/(R1�R0).
For the free vibration analysis, the displacement components of the plate can be expressed into the product

of displacement amplitude functions about coordinates r̄; ȳ; z̄ and an exponent function about time t as
follows:

uðr; y; z; tÞ ¼ Uðr̄; ȳ; z̄Þeiot; vðr; y; z; tÞ ¼ V ðr̄; ȳ; z̄Þeiot; wðr; y; z; tÞ ¼W ðr̄; ȳ; z̄Þeiot (5)

where o denotes the natural frequency of the plate and i ¼
ffiffiffiffiffiffiffi
�1
p

. Substituting Eqs. (2), (4) and (5) into
Eqs. (1) and (3), the maximum potential energy Pmax and the maximum kinetic energy Tmax can be
written as
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where g ¼ h/R. Each of the displacement amplitude functions takes the form of a triplicate series of Chebyshev
polynomials suitably combined with boundary functions as follows:

Uðr̄; ȳ; z̄Þ ¼ F urðr̄ÞFuyðȳÞ
X1
i¼1

X1
j¼1

X1
k¼1

AijkGiðr̄ÞGjðȳÞGkðz̄Þ

V ðr̄; ȳ; z̄Þ ¼ F vrðr̄ÞFvyðȳÞ
X1
l¼1

X1
m¼1

X1
n¼1

BlmnGlðr̄ÞGmðȳÞGnðz̄Þ

W ðr̄; ȳ; z̄Þ ¼ F wrðr̄ÞF wyðȳÞ
X1
p¼1

X1
q¼1

X1
r¼1

CpqrGpðr̄ÞGqðȳÞGrðz̄Þ (7)

where Aijk, Blmn and Cpqr are the coefficients yet to be determined. Gs(w) (s ¼ i, j, k, l, m, n, p, q, r, w ¼ r̄; ȳ; z̄)
are the Chebyshev polynomial series, which are given by

GsðwÞ ¼ cos½ðs� 1Þ arccosðwÞ�; s ¼ 1; 2; 3; . . . (8)

Furðr̄Þ, Fvrðr̄Þ and Fwrðr̄Þ are the boundary functions of displacements u, v and w in the r direction,
respectively. FuyðȳÞ, FvyðȳÞ and F wyðȳÞ are those of displacements u, v and w in the y direction, respectively. The
boundary functions can be written as follows:

F arðr̄Þ ¼ F0
arðr̄ÞF

1
arðr̄Þ; Fay ¼ F0

ayðȳÞF
1
ayðȳÞ; a ¼ u; v;w (9)

where F 0
arðr̄Þ and F 1

ayðr̄Þ are the boundary functions at r ¼ R0 and r ¼ R1, respectively. F0
ayðȳÞ and F1

ayðȳÞ are
those at y ¼ 0 and y ¼ y0, respectively. The boundary functions corresponding to common boundary
conditions are given in Table 1. The energy functional of the plate is defined as

P ¼ Pmax � Tmax (10)

Substituting Eq. (7) into Eq. (6), then minimizing energy functional (10), i.e.

qP
qAijk

¼ 0;
qP
qBlmn

¼ 0;
qP
qCpqr

¼ 0 (11)
Table 1

Boundary functions (BF) for various common boundary conditions

BF Clamped Free Sliding Hard simply supported Soft simply supported

F0
urðr̄Þ r̄þ 1 1 r̄þ 1 1 1

F0
vrðr̄Þ r̄þ 1 1 1 r̄þ 1 1

F0
wrðr̄Þ r̄þ 1 1 1 r̄þ 1 r̄þ 1

F1
urðr̄Þ r̄� 1 1 r̄� 1 1 1

F1
vrðr̄Þ r̄� 1 1 1 r̄� 1 1

F1
wrðr̄Þ r̄� 1 1 1 r̄� 1 r̄� 1

F0
uyðȳÞ ȳþ 1 1 ȳþ 1 1 1

F0
vyðȳÞ ȳþ 1 1 1 ȳþ 1 1

F0
wyðȳÞ ȳþ 1 1 1 ȳþ 1 ȳþ 1

F1
uyðȳÞ ȳ� 1 1 ȳ� 1 1 1

F1
vyðȳÞ ȳ� 1 1 1 ȳ� 1 1

F1
wyðȳÞ ȳ� 1 1 1 ȳ� 1 ȳ� 1

Note: hard simply supported means the zero displacement conditions in both the z direction and the tangential direction along the edge,

while soft simply supported means the zero displacement condition only in the z direction.
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and truncating i, j, k up to I+1, J+1 and K+1, respectively, one has the following eigenvalue equation:
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2
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in which, O ¼ oR
ffiffiffiffiffiffiffiffiffi
r=E

p
, [Kij] and [Mij] (i, j ¼ u, v, w) are the stiffness sub-matrices and the diagonal mass sub-

matrices, respectively. The column vectors {A}, {B} and {C} are composed of the unknown coefficients as follows:
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(13)

The elements in the sub-matrices [Kij] and [Mij] (i, j ¼ u, v, w) are given by
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Table 2

Convergence of l for cantilevered annular sector plates clamped on one straight edge and having y0 ¼ 1201, R0/R1 ¼ 0.5

h/R I� J�K l1 l2 l3 l4 l5 l6

Antisymmetric modes in thickness direction

0.01 18� 18� 1 1.7956 5.9855 13.661 20.624 36.233 40.314

18� 18� 2 1.6964 5.7464 13.247 19.654 34.905 38.399

18� 18� 3 1.6964 5.7464 13.247 19.654 34.905 38.399

22� 22� 2 1.6959 5.7431 13.240 19.646 34.888 38.381

26� 26� 2 1.6955 5.7413 13.237 19.642 34.880 38.371

30� 30� 2 1.6948 5.7402 13.235 19.639 34.876 38.365

0.2 16� 16� 2 1.6570 5.4593 12.141 18.612 31.405 34.952

16� 16� 3 1.6568 5.4588 12.139 18.611 31.398 34.947

16� 16� 4 1.6568 5.4588 12.139 18.611 31.398 34.947

20� 20� 3 1.6565 5.4573 12.138 18.606 31.394 34.939

22� 22� 3 1.6564 5.4570 12.137 18.605 31.393 34.937

24� 24� 3 1.6564 5.4567 12.137 18.604 31.393 34.936

0.5 14� 14� 3 1.5354 4.7865 9.7465 15.619 23.314 26.885

14� 14� 4 1.5353 4.7863 9.7458 15.618 23.312 26.884

14� 14� 5 1.5353 4.7863 9.7458 15.618 23.312 26.884

16� 16� 4 1.5351 4.7856 9.7451 15.616 23.311 26.881

18� 18� 4 1.5350 4.7851 9.7447 15.615 23.310 26.880

20� 20� 4 1.5350 4.7848 9.7445 15.614 23.310 26.879

Symmetric modes in thickness direction

0.2 16� 16� 3 6.8828 21.590 43.963 69.248 90.479 104.65

16� 16� 4 6.8828 21.590 43.963 69.248 90.479 104.65

20� 20� 3 6.8817 21.587 43.960 69.243 90.472 104.65

22� 22� 3 6.8814 21.586 43.959 69.242 90.470 104.65

24� 24� 3 6.8812 21.585 43.959 69.241 90.469 104.65

0.5 14� 14� 4 2.7611 8.6477 17.609 27.726 36.195 41.855

14� 14� 5 2.7611 8.6477 17.609 27.726 36.195 41.855

16� 16� 4 2.7607 8.6467 17.608 27.724 36.193 41.854

18� 18� 4 2.7605 8.6460 17.608 27.723 36.191 41.853

20� 20� 4 2.7604 8.6456 17.607 27.723 36.190 41.853
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in which

Da;b;c
asbs̄ ¼

Z 1

�1
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¼

Z 1
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da
½FayðȳÞPxðȳÞ�

dȳ
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½FbyðȳÞPx̄ðȳÞ�

dȳ
b

dȳ

Ha;b
atbt̄ ¼

Z 1

�1

daPtðz̄Þ

dz̄a

dbPt̄ðz̄Þ

dz̄b
dz̄

a; b ¼ 0; 1; c ¼ 0; 1;�1; a; b ¼ u; v;w; s ¼ i; l; p; s̄ ¼ ī; l̄; p̄; x ¼ j;m; q

x̄ ¼ j̄; m̄; q̄; t ¼ k; n; r; t̄ ¼ k̄; n̄; r̄ (15)

In the numerical computations, the piece-wise Gaussian quadrature is used to evaluate the integrals in Eq. (15).

3. Convergence and comparative studies

In the following analysis, Poisson’s ratio is fixed at n ¼ 0.3 and all the simple supports mean hard simple
supports unless stated otherwise. To be consistent with the frequency parameters defined in the literature, two
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Table 3

Convergence of l for annular sector plates clamped on one straight edge and having y0 ¼ 2401, R0/R1 ¼ 0.5

h/R I� J�K l1 l2 l3 l4 l5 l6

Antisymmetric modes in the thickness direction

0.01 18� 18� 1 1.8647 4.5829 9.4245 15.656 15.869 23.787

18� 18� 2 1.7545 4.3298 8.9672 15.007 15.147 22.737

18� 18� 3 1.7545 4.3298 8.9672 15.007 15.147 22.737

22� 22� 2 1.7533 4.3265 8.9599 14.999 15.136 22.720

26� 26� 2 1.7527 4.3246 8.9558 14.995 15.130 22.710

30� 30� 2 1.7522 4.3236 8.9533 14.993 15.126 22.704

0.2 16� 16� 2 1.7251 4.2281 8.6710 13.786 14.478 21.444

16� 16� 3 1.7251 4.2279 8.6707 13.785 14.478 21.443

16� 16� 4 1.7251 4.2279 8.6707 13.785 14.478 21.443

20� 20� 3 1.7241 4.2251 8.6646 13.783 14.469 21.429

22� 22� 3 1.7238 4.2243 8.6629 13.782 14.466 21.426

24� 24� 3 1.7237 4.2238 8.6618 13.782 14.465 21.423

0.5 14� 14� 3 1.6310 3.9289 7.7558 12.427 11.126 17.398

14� 14� 4 1.6309 3.9289 7.7557 12.427 11.126 17.397

14� 14� 5 1.6309 3.9288 7.7557 12.427 11.126 17.397

16� 16� 4 1.6304 3.9272 7.7527 12.423 11.125 17.396

18� 18� 4 1.6301 3.9262 7.7507 12.420 11.125 17.395

20� 20� 4 1.6299 3.9255 7.7495 12.419 11.125 17.394

Symmetric modes in the thickness direction

0.2 16� 16� 3 12.453 24.577 39.701 46.012 59.570 65.291

16� 16� 4 12.453 24.577 39.701 46.012 59.570 65.291

20� 20� 3 12.446 24.570 39.693 46.006 59.559 65.279

22� 22� 3 12.444 24.568 39.691 46.005 59.557 65.275

24� 24� 3 12.443 24.567 39.689 46.004 59.555 65.273

0.5 14� 14� 4 4.9956 9.8412 15.899 18.430 23.863 26.125

14� 14� 5 4.9956 9.8412 15.899 18.430 23.863 26.125

16� 16� 4 4.9937 9.8392 15.896 18.428 23.860 26.122

18� 18� 4 4.9924 9.8379 15.895 18.427 23.858 26.120

20� 20� 4 4.9915 9.8371 15.894 18.426 23.857 26.118
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non-dimensional eigenvalues are used: l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
and Ō ¼ oR1

ffiffiffiffiffiffiffiffiffi
r=E

p
. For plates, the vibration modes

can always be divided into antisymmetric and symmetric ones in the thickness direction. In this case, the
computational cost can be reduced by taking k,n ¼ 2,4,6,y, r ¼ 1,3,5,y for the antisymmetric vibration in
the thickness direction and k,n ¼ 1,3,5,y, r ¼ 2,4,6,y for the symmetric vibration in the thickness direction,
respectively.

The convergence studies of the frequency parameter l for cantilevered annular sector plates clamped
at a straight edge are carried out to study the convergence characteristics of the present method as shown in
Table 2. The radius ratio of the plates is R0/R1 ¼ 0.5 and the sector angle is y0 ¼ 1201. Three different
thickness ratios h/R ¼ 0.01,0.2,0.5 are examined, which correspond to thin, moderately thick and thick plates,
respectively. For simplicity, equal numbers of terms of admissible functions are taken in displacement
amplitude functions U, V and W although different numbers of terms among U, V and W might provide a
more rapid convergence. It is seen in Table 2 that the convergent rate of l is consistent with the upper-bound
characteristics of the Ritz method. Namely, as the number of terms of the admissible functions increases,
frequency parameter l tends to converge monotonically from the above. With the increase in plate thickness,
the number of terms needed in the z direction should be increased and at the same time the number of terms
used in the x and y directions can be reduced.

Table 3 gives the convergence of the cantilevered annular sector plates clamped at a straight edge with
R0/R1 ¼ 0.5 and y0 ¼ 2401. It is obvious that in such a case, the sector angle is re-entrant. It is seen that the
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Table 4

Comparison of l/p2 for annular sector plates with various boundary conditions for R0/R1 ¼ 0.4 and y0 ¼ 901

h/R BC Sources l1/p
2 l2/p

2 l3/p
2 l4/p

2 l5/p
2 l6/p

2

1/6 SSSS Ref. [28] 3.4476 5.5699 6.0808 8.6811 9.9621 10.248

Present 3.4476 5.5699 6.0807 8.6811 9.9620 10.248

SSFF Ref. [28] 2.6606 3.1100 3.2111 4.8673 5.8231 7.4718

Present 2.6602 3.1058 3.2107 4.8665 5.8203 7.4713

CCFF Ref. [28] 5.2651 5.5023 6.5224 8.6305 10.590 11.735

Present 5.2615 5.4983 6.5172 8.6262 10.584 11.728

CCSS Ref. [28] 5.6650 7.1019 9.8012 11.195 13.007 13.307

Present 5.6625 7.0999 9.7982 11.194 13.002 13.304

CCCC Ref. [28] 5.9306 7.8931 10.918 13.141 14.490 14.565

Present 5.9274 7.8885 10.910 13.135 14.480 14.563

1/3 SSSS Ref. [28] 2.9973 3.0424 4.5870 4.9818 5.5973 6.7040

Present 2.9973 3.0424 4.5870 4.9818 5.5973 6.7040

SSFF Ref. [28] 1.5608 2.3558 2.7829 2.9136 4.0289 4.6820

Present 1.5587 2.3556 2.7827 2.9121 4.0288 4.6812

CCFF Ref. [28] 3.8839 4.0336 4.7411 5.2979 6.2429 6.7281

Present 3.8821 4.0318 4.7494 5.2949 6.2415 6.7243

CCSS Ref. [28] 4.1722 5.2634 5.5973 7.0733 7.1145 8.4995

Present 4.1710 5.2625 5.5973 7.0730 7.1136 8.4976

CCCC Ref. [28] 4.3755 5.6945 7.2911 7.5643 8.5621 9.4678

Present 4.3738 5.5926 7.2904 7.5617 8.5600 9.4663

Note: BC means boundary conditions, the first two letters mean the boundary conditions at the straight edges and the other two letters

mean those at the curved edges, in which S ¼ simply supported, C ¼ clamped and F ¼ free.

Table 5

Comparison of Ō ¼ oR1

ffiffiffiffiffiffiffiffiffi
r=E

p
for flexural vibration of annular sector plates simply supported on two straight edges and free on other

edges for R0/R1 ¼ 0.5

h/R y0 (deg) Methods Ō1 Ō2 Ō3 Ō4 Ō5

0.01 30 HFEM [26] 0.071 0.175 0.266 0.305 0.496

Present 0.071 0.175 0.266 0.305 0.496

60 HFEM [26] 0.017 0.071 0.072 0.154 0.175

Present 0.017 0.071 0.072 0.154 0.175

0.2 30 HFEM [26] 1.304 2.929 4.180 4.617 6.883

Present 1.304 2.929 4.180 4.617 6.883

60 HFEM [26] 0.335 1.286 1.304 2.626 2.929

Present 0.335 1.286 1.304 2.626 2.929

0.6 30 HFEM [26] 2.750 5.024 6.494 6.656 6.868

Present 2.750 5.024 6.494 6.656 6.868

60 HFEM [26] 0.863 2.565 2.750 4.715 5.024

Present 0.863 2.565 2.750 4.715 5.024

1.0 30 HFEM [26] 3.309 3.897 5.142 5.748 6.333

Present 3.309 3.897 5.142 5.748 6.333

60 HFEM [26] 1.175 2.792 3.309 3.897 4.933

Present 1.175 2.792 3.309 3.897 4.933

Note: HFEM means hierarchical finite element method.
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convergence pattern of data in Table 3 is similar to that in Table 2. Comparing Tables 2 and 3, we can
see that using the same number of terms, the convergence rate for the plates with the sector angle y0 ¼ 1201 is
more rapid than that for the plates with the sector angle y0 ¼ 2401. This phenomenon can be attributed
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Table 6

Comparison of fundamental frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for flexural vibration of annular sector plates with two straight edges

simply supported for R0/R1 ¼ 0.5

y0 (deg) h/R Theories F–F S–S C–C F–C F–S

195 0.01 Classical [25] 0.1850 41.5375 90.0837 21.4263 10.8761

3-D 0.1856 41.5301 90.1125 21.4074 10.8522

0.2 Mindlin [25] 0.1784 38.6356 70.8090 19.9986 10.2268

3-D 0.1785 38.7635 71.9146 20.0967 10.2386

0.4 Mindlin [25] 0.1706 32.8713 48.6618 17.5822 9.3661

3-D 0.1707 33.1895 50.0059 17.7636 9.3961

210 0.01 Classical [25] 0.3239 41.3313 89.9678 20.9496 10.2631

3-D 0.3233 41.3242 90.0265 20.9368 10.2418

0.2 Mindlin [25] 0.3113 38.4554 70.7344 19.6097 9.6643

3-D 0.3114 38.5820 71.8406 19.7064 9.6751

0.4 Mindlin [25] 0.2968 32.7340 48.6117 17.2943 8.8769

3-D 0.2971 33.0498 49.9566 17.4733 8.9043

270 0.01 Classical [25] 0.6116 40.8220 89.6828 19.7282 8.5788

3-D 0.6104 40.8152 89.7655 19.7258 8.5635

0.2 Mindlin [25] 0.5812 38.0095 70.5516 18.6218 8.1304

3-D 0.5815 38.1335 71.6588 18.7149 8.1386

0.4 Mindlin [25] 0.5481 32.3938 48.4901 16.5657 7.5461

3-D 0.5488 32.7038 49.8361 16.7386 7.5670

360 0.01 Classical [25] 0.7044 40.4811 89.4931 18.8711 7.2502

3-D 0.7029 40.4748 89.6519 18.8831 7.2418

0.2 Mindlin [25] 0.6613 37.7107 70.4307 17.9366 6.9363

3-D 0.6608 37.8329 71.5435 18.0283 6.9426

0.4 Mindlin [25] 0.6151 32.1654 48.4105 16.0630 6.5171

3-D 0.6161 32.4715 49.7559 16.2316 6.5332

Note: classical means classical thin plate theory and Mindlin means Mindlin moderately thick plate theory.

Table 7

Comparison of l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for sector plates fixed at four edges with R0/R1 ¼ 0.5, h/R ¼ 0.4

y0 (deg) Methods l1 l2 l3 l4 l5 l6

30 Mindlin [17] 83.457 123.157 – 136.780 – 173.724

Present 86.147 127.498 135.545 S 141.927 146.727S 169.047

60 Mindlin [17] 56.594 77.357 – 103.806 105.145 –

Present 58.115 79.526 92.870S 107.259 108.349 114.749S

120 Mindlin [17] 49.788 54.674 63.253 – 74.838 88.418

Present 51.147 56.107 64.865 73.149S 76.759 90.769

Note: the superscript S on the data means the symmetric modes in the plate thickness direction.
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to the stress concentration at the re-entrant corner, as discussed by Leissa et al. [24,25]. However, by increasing
the number of terms of the admissible functions, convergence can be still rapidly achieved in the present
analysis.

Table 4 gives a comparative study between the present solutions and the solutions from Liew et al. [28]
where a combination of 1-D and 2-D orthogonal polynomials was used as admissible functions. It is seen
for Table 4 that the present Chebyshev solutions are in good agreement with the orthogonal polynomial
solutions.
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Table 8

Frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sector plates with four clamped edges

h/R y0 l1 l2 l3 l4 l5 l6

R0/R1 ¼ 0.25

0.25 1201 32.649AS 44.109AA 59.368AS 66.765AS 62.677SA 75.869AA

1801 29.892AS 34.712AA 42.710AS 52.613AA 54.975SA 63.388AS

2401 29.132AS 31.505AA 35.889AS 42.012AA 49.287AS 52.175SA

3601 28.699AS 29.553AA 31.189AS 33.731AA 37.155AS 41.320AA

0.5 1201 21.365AS 28.096AA 31.375SA 36.587AS 39.410AS 40.265SS

1801 19.534AS 22.793AA 27.509SA 27.620AS 33.249AA 34.241SS

2401 18.959AS 20.724AA 23.631AS 26.101SA 27.362AA 30.453SS

3601 18.609AS 19.301AA 20.536AS 22.310AA 24.538AS 25.093SA

1.0 1201 12.004AS 15.551AA 15.684SA 19.585AA 20.056AS 20.099SS

1801 10.993AS 12.877AA 13.755SA 15.514AS 16.987SS 17.826AA

2401 10.638AS 11.745AA 13.052SA 13.418AS 15.172SS 15.450AA

3601 10.401AS 10.881AA 11.673AS 12.548SA 12.734AA 13.603SS

R0/R1 ¼ 0.5

0.25 1201 66.933AS 73.194AA 84.689AS 101.04AA 116.99SA 121.05AS

1801 65.782AS 68.097AA 72.425AS 79.084AA 88.103AS 99.239AA

2401 65.444AS 66.619AA 68.763AS 72.068AA 76.678AS 82.641AA

3601 65.227AS 65.700AA 66.530AS 67.770AA 69.483AS 71.727AA

0.5 1201 43.596AS 47.972AA 55.488AS 58.525SA 65.466AA 72.982SS

1801 42.748AS 44.412AA 47.496AS 52.059AA 55.181SA 57.929AS

2401 42.503AS 43.337AA 44.887AS 47.266AA 50.498AS 53.976SA

3601 42.352AS 42.677AA 43.264AS 44.161AA 45.410AS 47.041AA

1.0 1201 24.421AS 27.129AA 29.261SA 31.468AS 36.178SS 36.806AA

1801 23.842AS 24.982AA 26.959AS 27.589SA 29.699AA 31.211SS

2401 23.665AS 24.258AA 25.321AS 26.870AA 26.986SA 28.864AS

3601 23.556AS 23.789AA 24.210AS 24.845AA 25.703AS 26.552SA

Note: the first superscript on the data describes the modes in the thickness direction and the second one describes those in the

circumferential direction, in which A ¼ antisymmetric mode and S ¼ symmetric mode.
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A comparative study of the present solutions with those using the three-dimensional (3-D) hierarchical finite
element method is given in Table 5. It is seen from Table 5 that the present solutions are the same as those
from the hierarchical finite element solutions.

It should be noted that no previously published results are known to exist for the 3-D vibration of sector
plates with a re-entrant corner (y41801). However, Leissa et al. [24,25] provided the exact results for sector
plates with a re-entrant corner, based on the Mindlin plate theory. The comparative studies of the
fundamental frequency parameters are given in Table 6. It is seen from Table 6 that for thin plates
(h/R ¼ 0.01), there is an excellent agreement between the present 3-D solutions and the classical solutions. For
moderately thick plates (h/R ¼ 0.2), the present 3-D solutions also agree quite well with the Mindlin solutions.
For very thick plates (h/R ¼ 0.4), the discrepancies increase, particularly for C–C plates. Therefore, we can
conclude that the error of the Mindlin plate theory increases with the increase of the plate thickness,
particularly for very thick plates. It is well known that the Mindlin theory considers the first-order shear
deformation of the plate; however, it ignores the effect of the higher-order shear deformation. It is seen from
Table 6 that the maximum differences between the 3-D solutions and the Mindlin solutions always occur at
the C–C plates. It has been known that the accuracy of the Mindlin solutions is dependent on the boundary
conditions of the plates [31]. For a clamped edge, the rigid boundary constraints result in a rapid change of
stresses and strains in the boundary layer zone, which cannot be adequately modeled by the simple constant
shear Mindlin theory. In fact, Dauge and Yosibash [32] demonstrated that the Mindlin model cannot capture
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Table 9

Frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sector plates with clamped straight edges and free on other edges

h/R y0 (deg) l1 l2 l3 l4 l5 l6

R0/R1 ¼ 0.25

0.25 120 7.4547AS 16.806AA 26.472AS 29.111AS 29.591SA 34.082SS

180 3.7636AS 8.3825AA 14.954AS 16.680SA 18.451AS 22.857AA

240 2.3596AS 4.8540AA 9.0256AS 9.9743SA 14.121AA 14.475AS

360 1.3330AS 2.0923AA 4.0524AS 4.2271SA 6.6585AA 9.2704SS

0.5 120 6.3698AS 12.677AA 14.827SA 17.098SS 17.827AS 20.359AS

180 3.4333AS 6.9920AA 8.3547SA 11.787AS 13.030SS 13.068AS

240 2.1623AS 4.2779AA 4.9990SA 7.6058AS 9.5340SS 10.771AS

360 1.1575AS 1.9294AA 2.2122SA 3.6420AS 4.6439SS 5.8045AA

1.0 120 4.5612AS 7.4381SA 7.6917AA 8.5605SS 9.6644AS 11.360SA

180 2.7279AS 4.1900SA 4.7179AA 6.5453SS 7.3464AS 7.8051AS

240 1.7701AS 2.5085SA 3.1603AA 4.7893SS 5.1971AS 6.6529AS

360 0.8930AS 1.0689SA 1.5925AA 2.3312SS 2.7722AS 4.0647SA

R0/R1 ¼ 0.5

0.25 120 6.8172AS 17.491AA 23.455AS 32.195AS 36.895SS 37.245SA

180 3.0170AS 7.8534AA 15.088AS 16.519AS 18.481SA 24.392AA

240 1.7106AS 4.1831AA 8.5374AS 9.9570SA 13.358AS 14.175AA

360 0.8566AS 1.5961SA 3.3885AS 3.4609AA 6.0005SA 8.5378SS

0.5 120 6.2478AS 14.689AA 17.813AS 18.492SS 18.649SA 25.304AS

180 2.8772AS 7.1130AA 9.2573SA 12.886AS 13.427AS 13.901SS

240 1.6295AS 3.9242AA 4.9899SA 7.7470AS 9.8354SS 11.124AS

360 0.7799AS 1.5309SA 1.7348AA 3.2025AS 4.2760SS 5.5690SA

1.0 120 4.9679AS 9.2870SS 9.3518SA 9.9605AA 10.695AS 15.215SA

180 2.5118AS 4.6445SA 5.4566AA 6.9694SS 8.4447AS 9.4125AS

240 1.4453AS 2.5059SA 3.2636AA 4.9287SS 5.9447AS 7.5959AS

360 0.6416AS 0.8720AA 1.3653SA 2.1457SS 2.7108AS 4.0412AA

See the legend of Table 8.
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the boundary layer term for the clamped edge, whereas the higher-order shear deformation theories can do a
much better job.

Table 7 gives a comparison of the present 3-D elasticity solutions and the 2-D Mindlin solutions for thick
sector plates with four fixed edges. The radius ratio and the thickness ratio of the plates are R0/R1 ¼ 0.5 and
h/R ¼ 0.4, respectively. Three different sector angles y0 ¼ 301, 601, 1201 are considered. It is seen from Table 7
that the Mindlin solutions are always lower than the present 3-D elasticity solutions. Moreover, it is seen that
the Mindlin solutions cannot give the extending modes (i.e. the symmetric modes in the plate thickness
direction), which could go into the low-order modes of the thick plates. However, the present 3-D analysis can
provide a complete vibration spectrum that is composed of antisymmetric modes and symmetric modes in the
plate thickness direction.

4. Numerical results

In this section, some benchmark results are presented in Tables 8–11 for comparisons with results from
other methods. Four boundary conditions are considered: four clamped edges, two clamped straight edges and
the other edges free, four hard simply supported edges, two straight edges free and the other edges clamped.
Considering the symmetry of the boundary conditions in the y direction, the vibration modes can be divided
into four cases: antisymmetric in the z direction and antisymmetric in the y direction (AA mode),
antisymmetric in the z direction and symmetric in the y direction (AS mode), symmetric in the z direction and
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Table 10

Frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sector plates with four edges simply supported

h/R y0 (deg) l1 l2 l3 l4 l5 l6

R0/R1 ¼ 0.25

0.25 120 21.069AS 26.194SS 33.633AA 39.806SA 48.611SA 50.145AS

180 18.561AS 24.532AA 26.192SS 29.223SA 33.633AS 39.806SS

240 17.690AS 21.069AA 26.194SA 26.573AS 27.402SS 31.505SS

360 17.075AS 18.561AA 21.069AS 24.532AA 26.192SA 26.194SS

0.5 120 13.115SS 16.462AS 19.911SA 24.306SA 24.635AA 29.027SS

180 13.119SS 14.625SA 14.650AS 18.836AA 19.911SS 24.306SA

240 13.115SA 13.725SS 13.996AS 15.763SS 16.462AA 19.911SA

360 13.115SS 13.119SA 13.515AS 14.588SS 14.625SA 14.650AA

1.0 120 6.5742SS 9.9622SA 10.513AS 12.153SA 13.326AS 14.518SS

180 6.5803SS 7.3240SA 9.4280AS 9.9622SS 11.840AA 12.153SA

240 6.5742SA 6.8824SS 7.8915SS 9.0126AS 9.9622SA 10.513AA

360 6.5743SS 6.5804SA 7.3092SS 7.3240SA 8.5374SS 8.7024AS

R0/R1 ¼ 0.5

0.25 120 39.493AS 44.178SS 49.082AA 63.496SA 64.190AS 83.553AA

180 37.681AS 40.107SS 42.013AA 49.082AS 49.618SA 58.614AA

240 37.044AS 38.652SS 39.493AA 43.532AS 44.178SA 49.082AA

360 36.589AS 37.607SS 37.681AA 39.493AS 40.107SA 42.013AA

0.5 120 22.119SS 31.762SA 31.853AS 38.449AA 44.135SS 48.273AS

180 20.090SS 24.833SA 30.567AS 31.762SS 33.620AA 38.449AS

240 19.366SS 22.119SA 26.404SS 30.112AS 31.762SA 31.853AA

360 18.846SS 20.090SA 22.119SS 24.833SA 28.094SS 29.785AS

1.0 120 11.090SS 15.894SA 20.984AS 22.074SS 24.682AA 26.204SA

180 10.083SS 12.439SA 15.894SS 19.940SA 20.232AS 21.997AA

240 9.7248SS 11.090SA 13.222SS 15.894SA 18.894SS 19.964AS

360 9.4674SS 10.083SA 11.090SS 12.439SA 14.064SS 15.894SA

See the legend of Table 8.
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antisymmetric in the y direction (SA mode), symmetric in the z direction and symmetric in the y direction
(SS mode). It can be seen from Tables 7 to 10 that with the increase of the thickness ratio, the symmetric mode
in the thickness direction falls into the scope of the low-order frequencies, which cannot be obtained from the
classical plate or Mindlin plate theories. For example, when h/R ¼ 0.5 and h/R ¼ 1.0, the fundamental
frequency of the simply supported plates is symmetric mode in the thickness direction. It is well known that
the 2-D theories, either the thin plate theory or the Mindlin theory, cannot predict the symmetric mode in the
thickness direction. The ability to find the symmetric mode in the thickness direction is an important
contribution of the 3-D elasticity analysis. It is seen from Tables 8 to 11 that the frequency parameters
monotonically decrease with the increase of the sector angle and the plate thickness; however, they
monotonically increase with the increase of the radius ratio.

In the 2-D plate theories, the simply supported edge means zero transverse displacement at the edge and
zero moment along the edge. However, in the 3-D analysis, there are two kinds of simply supported
definitions. One is the zero transverse displacement (the displacement in the z direction) at the edge and the
zero tangential displacement along the edge, which is called hard simply supported. The other case requires
only zero transverse displacement at the edge, which is called soft simply supported. Two kinds of simple
supports correspond to different boundary functions as shown in Table 1. Table 12 gives a comparison of
frequency parameters between two kinds of simple supports. It is shown from Table 12 that for thin plates
(h/R ¼ 0.01), the frequency difference between hard simple supports and soft simple supports is negligible.
However, with the increase of plate thickness, the frequency difference between the two kinds of simple
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Table 11

Frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sector plates with free straight edges and the other edges clamped

h/R y0 (deg) l1 l2 l3 l4 l5 l6

R0/R1 ¼ 0.25

0.25 120 28.181AS 29.502AA 35.816AS 45.545SA 48.301AA 56.486SS

180 28.255AS 28.803AA 31.455AS 37.009AA 45.465AS 46.476SA

240 28.292AS 28.570AA 30.009AS 32.926AA 37.679AS 44.061AA

360 28.327AS 28.424AA 29.051AS 30.202AA 32.088AS 34.822AA

0.5 120 18.278AS 19.210AA 22.789SA 23.488AS 28.268SS 30.955AA

180 18.309AS 18.748AA 20.628AS 23.250SA 24.364AA 25.553SS

240 18.326AS 18.571AA 19.623AS 21.703AA 23.459SA 24.607SS

360 18.344AS 18.445AA 18.915AS 19.788AA 21.168AS 23.068AA

1.0 120 10.196AS 10.763AA 11.408SA 13.310AS 14.062SS 15.673AA

180 10.206AS 10.517AA 11.634SA 11.700AS 12.770SS 13.687AA

240 10.213AS 10.400AA 11.092AS 11.736SA 12.308SS 12.350AA

360 10.221AS 10.306AA 10.632AS 11.215AA 11.829SA 12.017SS

R0/R1 ¼ 0.5

0.25 120 64.789AS 65.627AA 69.384AS 76.942AA 89.353AS 101.43SA

180 64.860AS 65.190AA 66.846AS 69.897AA 74.814AS 81.933AA

240 64.896AS 65.055AA 66.004AS 67.633AA 70.174AS 73.814AA

360 64.927AS 64.975AA 65.435AS 66.124AA 67.155AS 68.581AA

0.5 120 42.118AS 42.639AA 45.052AS 50.303AA 50.739SA 55.538SS

180 42.151AS 42.371AA 43.412AS 45.498AA 48.983AS 51.187SA

240 42.168AS 42.281AA 42.869AS 43.962AA 45.747AS 48.355AA

360 42.185AS 42.225AA 42.498AS 42.952AA 43.655AS 44.660AA

1.0 120 23.431AS 23.745AA 25.304AS 25.383SA 27.744SS 28.540AA

180 23.443AS 23.590AA 24.255AS 25.603SA 25.658AA 26.527SS

240 23.450AS 23.532AA 23.905AS 24.648AA 25.706SA 25.868AS

360 23.458AS 23.491AA 23.661AS 23.969AA 24.459AS 25.163AA

See the legend of Table 8.
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supports increases, particularly for plates with large sector angles. The effect of simple support conditions is
important on the low-order frequencies, particularly on the fundamental frequency. For example, for plate
with h/R ¼ 0.4 and y ¼ 2701 the fundamental frequency parameters corresponding to hard and soft simple
supports are 23.942 versus 3.1029. Therefore, for thick sector plates the simple supported boundaries should
be carefully defined.

The present method can be extended to study the 3-D vibration of shallow helicoidal shells with a small
helix angle [25]. Table 13 gives the first six frequency parameters of thin helicoidal shells for y ¼ 390–4801 with
an incremental angle 301. It should be noted that the present solutions are only suitable for the approximate
estimations of low-order eigenfrequencies of the helicoidal shells with very small helix angle.

Figs. 2–4 give the vibration modes of thick sector plates with clamped straight edges and free on
other edges. The sector angle and the radius ratio are, respectively, y ¼ 1201 and R0/R1 ¼ 0.5. The first six
modes for three different thickness ratios h/R ¼ 0.25, 0.5 and 1.0 are presented. It is seen from Figs. 2
to 4 that the antisymmetric modes in the thickness direction exhibit the flexural vibrations while the symmetric
modes in the thickness direction exhibit the extending vibrations. With an increase of plate thickness,
the symmetric modes in the thickness direction move down in the list of low-order eigenfrequencies.
When h/R ¼ 0.25, the fifth and sixth frequencies are those of the symmetric modes in the thickness
direction. When h/R ¼ 0.5, the fourth and fifth frequencies are those of the symmetric modes in the thickness
direction. When h/R ¼ 1.0, the second, third and sixth frequencies are those of the symmetric modes in the
thickness direction.
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Table 13

Frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for shallow helicoidal shells with h/R ¼ 0.01

R0/R1 y0 (deg) l1 l2 l3 l4 l5 l6

Shallow helicoidal shells with four free edges

0.25 390 1.358AA 2.768AS 5.454AA 5.702AS 9.616AS 9.792AA

420 1.157AA 2.287AS 4.593AA 6.278AS 8.630AS 9.015AA

450 1.027AA 1.895AS 3.877AA 5.728AS 8.010AS 8.218AA

480 0.9500AA 1.582AS 3.278AA 5.110AS 7.406AA 7.624AS

0.5 390 0.8963AA 2.145AS 4.392AA 6.666AS 9.168AA 9.398AS

420 0.7485AA 1.728AS 3.628AA 5.830AS 8.273AA 8.838AS

450 0.6538AA 1.403AS 3.007AA 5.027AS 7.349AA 8.429AS

480 0.5960AA 1.150AS 2.500AA 4.315AS 6.460AA 8.002AS

Shallow helicoidal shells with clamped straight edges and the other edges free

0.25 390 1.356AS 1.854AA 3.591AS 6.038AA 9.055AS 12.60AA

420 1.257AS 1.609AA 3.040AS 5.140AA 7.779AS 10.87AA

450 1.172AS 1.428AA 2.601AS 4.406AA 6.730AS 9.463AA

480 1.098AS 1.295AA 2.248AS 3.800AA 5.856AS 8.287AA

0.5 390 0.8232AS 1.352AA 2.853AS 5.163AA 8.136AS 11.69AA

420 0.7520AS 1.147AA 2.354AS 4.310AA 6.869AS 9.951AA

450 0.6954AS 0.9991AA 1.961AS 3.625AA 5.842AS 8.534AA

480 0.6494AS 0.8893AA 1.650AS 3.069AA 4.999AS 7.366AA

See the legend of Table 8.

Table 12

Comparison of frequency parameter l ¼ oR2
1

ffiffiffiffiffiffiffiffiffiffiffiffi
rh=D

p
for annular sector plates with (a) four hard simply-supported edges and (b) four soft

simply supported edges, R0/R1 ¼ 0.5

y0 (deg) BC l1 l2 l3 l4 l5 l6

h/R ¼ 0.01

90 Hard 47.079AS 68.359AA 103.39AS 150.88AA 166.22AS 189.44AA

Soft 46.997AS 68.150AA 103.11AS 150.56AA 166.13AS 189.10AA

180 Hard 41.790AS 47.079AA 55.943AS 68.359AA 84.226AS 103.39AA

Soft 41.771AS 47.013AA 55.823AS 68.192AA 84.028AS 103.17AA

270 Hard 40.815AS 43.158AA 47.079AS 52.591AA 59.690AS 68.359AA

Soft 40.807AS 43.129AA 47.020AS 52.500AA 59.569AS 68.211AA

h/R ¼ 0.2

90 Hard 43.609AS 61.536AA 62.011SS 89.094AS 99.631SA 123.33AA

Soft 42.320AS 58.512AA 51.925SS 85.528AS 88.642SS 98.788SA

180 Hard 38.992AS 43.609AA 50.115SS 51.198AS 61.536AA 62.011SA

Soft 14.323SS 35.273SA 38.650AS 42.443AA 49.142AS 56.170SS

270 Hard 38.133AS 40.192AA 43.609AS 47.802SS 48.349AA 53.305SA

Soft 6.1718SS 15.271SA 30.057SS 37.982AS 39.630AA 42.485AS

h/R ¼ 0.4

90 Hard 31.030SS 36.875AS 49.825SA 49.862AA 65.510SA 68.350AS

Soft 26.087SS 35.402AS 44.367SS 46.897AA 49.539SA 65.311AS

180 Hard 25.095SS 31.030SA 33.365AS 36.875AA 39.694SS 42.487AS

Soft 7.1998SS 17.717SA 28.146SS 32.220SS 32.938AS 35.491AA

270 Hard 23.942SS 26.685SA 31.030SS 32.704AS 34.285AA 36.590SA

Soft 3.1029SS 7.6741SA 15.096SS 23.824SA 25.706SS 32.510AS
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�1
AS = 6.8172 �2

AA = 17.491

�4
AA = 32.195�3

AA = 23.455

�5
SS = 36.895 �6

SA = 37.245

Fig. 2. The first six modes of the sector plate with clamped straight edges and free on other edges, R0/R1 ¼ 0.5, h/R ¼ 0.25, a ¼ 1201. The

first superscript on l describes the modes in the thickness direction and the second one describes those in the circumferential direction.

�6
AS=25.304

�1
AS = 6.2478 �2

AA = 14.689

�4
SS = 18.492�3

AS = 17.813

�5
SA = 18.649

Fig. 3. The first six modes of the sector plate with clamped straight edges and free on other edges, R0/R1 ¼ 0.5, h/R ¼ 0.5, a ¼ 1201.
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5. Conclusions

The 3-D vibration analysis of thick sector plates has been presented. The analysis is based on the 3-D linear
small strain elasticity theory. The Chebyshev–Ritz method expressed in terms of cylindrical coordinates is used
to obtain frequency parameters of thick sector plates under various support conditions. High accuracy, rapid
convergence and numerical robustness of the present method have been demonstrated. A complete set of free
vibration spectrum for thick annular sector plates have been provided from the present analysis, which cannot
be obtained by the CPT or the Mindlin plate theory. Some benchmark results are provided in tabulation for
the first time such as the frequency parameters of plates with re-entrant sector angle and the shallow helicoidal
shells. The effect of simply supported conditions on frequency parameters of thick sector plates has also been
discussed in detail.
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�1
AS = 4.9679

�3
SA = 9.3518

�5
AS = 10.695 �6

SA = 15.215

�4
AA = 9.9605

�2
SS = 9.2870

Fig. 4. The first six modes of sector plate with clamped straight edges and free on the other edges, R0/R1 ¼ 0.5, h/R ¼ 1.0, a ¼ 1201.
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